Contents

1 Introduction........................................................................................................................................ 1
  1.1 Conditions of Use....................................................................................................................... 1
  1.2 Machine Description.................................................................................................................... 1
    1.2.1 Pickup Lift Lever and Lock Arm.......................................................................................... 1
    1.2.2 Pickup Lower Limit Chain.................................................................................................. 1
    1.2.3 Shear Bolt........................................................................................................................... 2
    1.2.4 Pickup Drive Chain.............................................................................................................. 2
    1.2.5 Bale Chamber....................................................................................................................... 2
    1.2.6 Drive Chains........................................................................................................................ 2
    1.2.7 Hydraulic Power Pack......................................................................................................... 2
    1.2.8 Bale Density Control........................................................................................................... 2
    1.2.9 Bale Chamber Full Indicator............................................................................................... 2
    1.2.10 Full Bale Chamber Alarm................................................................................................ 2
    1.2.11 Bale Ejection..................................................................................................................... 5
2 Operator Safety ................................................................................................................................ 6
  2.1 Tractor Operation Safety............................................................................................................ 6
  2.2 Implement Operation Safety...................................................................................................... 6
3 Tractor Connection ............................................................................................................................ 7
  3.1 Thread the Twine......................................................................................................................... 7
  3.2 Connect the Baler to the Three-Point Hitch.............................................................................. 8
  3.3 Connect the PTO Shaft............................................................................................................... 8
  3.4 Attach the Gate Lift Pull Rope.................................................................................................. 8
  3.5 Check Full Bale Chamber Alarm............................................................................................... 8
4 Operation .......................................................................................................................................... 9
  4.1 Operational Adjustments.............................................................................................................. 9
    4.1.1 Adjusting Twine Tension.................................................................................................... 9
    4.1.2 Adjusting Pickup Height..................................................................................................... 9
    4.1.3 Adjusting Number of Wraps per Bale................................................................................ 10
    4.1.4 Adjusting Bale Density...................................................................................................... 10
    4.1.5 Adjusting Tailgate Closing Speed...................................................................................... 10
    4.1.6 Resetting the Twine Arm.................................................................................................. 11
  4.2 Operation Procedure.................................................................................................................... 12
    4.2.1 Initial Setup........................................................................................................................ 12
    4.2.2 Baling.................................................................................................................................. 13
    4.2.3 Finishing Work.................................................................................................................... 14
  4.3 Recommendations for Good Results.......................................................................................... 14
5 Maintenance...................................................................................................................................... 15
  5.1 Maintenance Safety..................................................................................................................... 15
5.2 Maintenance Schedule................................................................................................................. 15
5.3 Routine Maintenance ................................................................................................................... 16
  5.3.1 Roller Chain Tension ............................................................................................................ 16
  5.3.2 Pickup Slip Clutch Tension ................................................................................................. 16
  5.3.3 Pickup Suspension ............................................................................................................... 17
  5.3.4 Twine Tension ...................................................................................................................... 17
  5.3.5 Twine Cutting Blade ............................................................................................................. 18
5.4 End of Season Storage ................................................................................................................ 19
5.5 Beginning of Season .................................................................................................................. 19
1 Introduction

Congratulations on your purchase of the Ibex TX31 mini round baler. Your machine, if properly operated and maintained, will provide many years of productive use. The purpose of this manual is to help you do this by describing proper safety, operation, and maintenance procedures. Do not attempt to use the machine without thoroughly understanding the information contained in this manual. Contact your Ibex dealer for assistance if any information described herein is not completely clear.

\[\text{NOTE: All references made in this manual to right, left, front, rear, top and bottom is as viewed facing the direction of forward travel with implement properly attached to tractor.}\]

1.1 Conditions of Use

Your Ibex TX31 baler is designed to gather, compress, and bind crop materials such as hay, straw, and pine straw, into easy to handle round bales. The machine performs best under certain conditions. Use of the machine outside of those conditions could result in poor performance or damage to the machine.

The machine is designed to...

...work with tractors with 18 – 45 engine horsepower. Using this machine with a tractor that is outside of the specified power range may result in damage or premature wear of the machine and/or sub-optimal machine function.

...bale crop that is of optimal length. Crop material should not be excessively short (< 12”) or excessively long (> 48”).

...bale hay that contains optimal moisture content. Hay should not exceed 20% moisture content.

...bale silage that contains optimal moisture content. Silage should contain between 50% and 60% moisture content.

...work in a dry field. Do not attempt to use the machine immediately after rain or in a muddy field.

...be operated while exercising the safety instructions detailed in the “Operator Safety” section of this manual.

1.2 Machine Description

1.2.1 Pickup Lift Lever and Lock Arm

The pickup is held in the raised position during transport using the lift lever (Figure 1, A) and is held in place using the lock arm (B).

1.2.2 Pickup Lower Limit Chain

The lower limit chain (Figure 2, A) sets the minimum height of the pickup tines from the ground.
1.2.3 Shear Bolt
The shear bolt (Figure 4, A) breaks to prevent damage to the machine in overload conditions.

1.2.4 Pickup Drive Chain
The pickup drive chain (Figure 5, A) transfers power to turn the pickup. The friction clutch (B) slips only in overload conditions to prevent damage to the pickup mechanism. Chain tension is controlled by the idler (C).

1.2.5 Bale Chamber
The bale chamber consists of multiple rollers that turn the bale and form it into a fixed-size cylindrical shape (Figure 6).

1.2.6 Drive Chains
The baler’s rollers are turned by a series of drive chains (Figure 7, A). Tension springs (B) provide proper tension to each chain. See Section 5.3.1 for chain tension specifications.

1.2.7 Hydraulic Power Pack
The baler raises the tailgate to eject the bale using a hydraulic cylinder. Hydraulic fluid is pushed into the cylinder by the hydraulic power pack (Figure 8, A), which is powered by the rotating motion of the PTO shaft which turns the roller chain (B).

1.2.8 Bale Density Control
The density selector rod (Figure 9, A) can be placed in one of four holes (B) to vary bale density. See Section 4.1.4 for details.

1.2.9 Bale Chamber Full Indicator
The chamber full indicator rod (Figure 10, A) rises gradually as the chamber fills up and reaches the red zone when the bale is dense enough to eject, according to the density selection.

1.2.10 Full Bale Chamber Alarm
The full chamber horn (11, A) sounds when the bale chamber is full, after the twine arm (Figure 12, A) drops and depresses the activation switch (B). This begins the twine wrapping process.
1.2.11 Bale Ejection

The bale is allowed to exit the chamber by lifting the tailgate (Figure 13, A). Pulling the tailgate lift lever (B) activates the hydraulic power unit (Figure 8, A) to retract the cylinder (C) to pull the gate open. The gate remains open while the lever is pulled. Once the lever is released, the gate closes.

Figure 13

The bale ejector (Figure 14, A) rolls the finished bale far enough from the machine to allow the gate to close.

Figure 14
2 Operator Safety

Your safety is important to us. Please carefully read and follow the instructions given below and contained elsewhere in this manual before attempting to operate the machine. Most accidents can be avoided if you fully understand and implement the safety practices discussed in this section.

**WARNING:** READ and UNDERSTAND all safety instructions in this section as well as warnings, cautions, and important notes throughout the manual. Serious injury or death may occur unless care is taken to follow these warnings.

2.1 Tractor Operation Safety

- READ and UNDERSTAND all safety instructions and warnings in the operator’s manual for your tractor.
- Understand how to stop forward motion, the engine, and the PTO of your tractor quickly in case of an emergency.
- Do not allow an inexperienced person to operate the tractor or any attachments without supervision.
- Wear proper safety gear at all times.
- Do not operate the tractor while under the influence of alcohol or drugs. Consult a medical professional regarding any prescription medications that you are currently taking and any side effects that could hinder your ability to operate the tractor safely.
- Only operate a tractor that has been properly maintained.
- Only operate the tractor in conditions of clear visibility. Never operate in dark or foggy conditions where visibility is restricted in front and to the sides of the tractor and implement. Ensure that all obstacles, steep slopes in the terrain, and overhead obstructions are visible.
- The tractor must be equipped with a rollover protection system (ROPS) and seatbelts to ensure operator safety in case of a rollover incident.
- Always set the parking brake and/or set the tractor transmission in parking gear, disengage the PTO, stop the engine, and wait for all moving parts to stop before leaving the tractor seat.
- Do not operate the tractor or implement while hydraulic oil or fuel is leaking. Oil and fuel are explosive, and their presence could present a hazard. Hydraulic lines are under extreme pressure and, if a break occurs, bursting oil could cause skin injury and/or tissue damage. Turn off the engine and relieve hydraulic pressure before checking for leaks.

2.2 Implement Operation Safety

- Keep body parts, clothing, jewelry, and anything else that is tethered to the body away from moving parts on the baler to prevent entanglement, which could result in serious injury or death.
- Use extreme caution when performing repairs, maintenance, and when removing accumulated material.
- Use care to avoid striking solid objects such as fencing or sign posts. The impact could cause loss of control of the tractor and implement, which could be hazardous.
- The baler must not be modified or altered, particularly with respect to the components that make up the machine’s primary function.
3 Tractor Connection

CAUTION: Only attach and detach the baler on a level surface. Always apply the parking brake on the tractor when attaching an implement.

3.1 Thread the Twine

Threading the twine is simpler if done before attaching the machine to the tractor. Follow the steps below.

a) Place the roll(s) in the chamber facing as shown in Figure 15.

b) If using two rolls, connect them together by tying the outside end of the right-hand roll (the end trapped under the cover) to the inside end of the left-hand roll (the end in the center of the roll). The knot you create will have to travel through the twine tension mechanism. Split each of these ends in half and tie corresponding ends together, creating two smaller offset knots. By connecting rolls together, you can avoid running out of twine in the middle of wrapping a bale, as well as needing to re-thread the twine.

c) Thread the twine through the mechanism as shown in Figure 15 - Figure 18 in order from 1-8.

d) Cut the end of the twine, leaving about 12” of string hanging from the tip of the twine arm. The twine should not reach the bale chamber, otherwise the bale will pull it and the bale wrapping mechanism will be triggered.
3.2 Connect the Baler to the Three-Point Hitch

a) Attach and secure the tractor’s lift arms to the two lower pins on the baler.
b) Raise the lift arms slightly to remove weight from the stand and then raise the stand, securing it with the linchpin.
c) Raise or lower the lift arms to tilt the baler until the top of the baler is **level with the ground**.
d) Adjust the tractor top link until it aligns with the top link mounting holes on the baler and secure with top link pin.
e) Tighten sway chains on the tractor’s lift arms to center the baler and prevent lateral movement.

3.3 Connect the PTO Shaft

*NOTE: If attaching the bale to the tractor for the first time, please note that the PTO shaft may need to be shortened. See our PTO Shaft Cutting Guide for details.*

Connect both ends of the shaft by pushing in the locking pin and sliding the yoke onto the PTO of the tractor and baler. Push until the locking pin releases and settles into the groove. Attach the cover’s safety chains to a stationary part of the tractor. Leave some slack in the chain to accommodate pivoting movements.

3.4 Attach the Gate Lift Pull Rope

Attach one end of the rope to the gate lift lever if not already attached. Tie the other end of the rope to the tractor’s ROPS bar or somewhere inside the cab for easy access during work.

*CAUTION: Leave some slack so that the rope does not become taught during regular operation, but not so loose that it becomes entwined in the PTO shaft or other moving parts.*

3.5 Check Full Bale Chamber Alarm

Test the function of the full chamber horn by depressing the activation switch (see Figure 19). If the horn does not sound, try replacing the 9-volt battery and test it again. Make sure the switch on the battery compartment is in the “ON” position.

*CAUTION: Do not operate the bale without a working full chamber horn.*

![Figure 19](image-url)
4 Operation

The purpose of this section is to instruct you on the safe and optimal use of your new TX31 baler. Pictures are included for illustrative purposes but may not match your machine exactly. Some pictures show protective covers removed for purposes of clarity. DO NOT attempt to operate the machine while the protective covers are removed.

Every operator of the implement, whether it is you or someone else, must be completely familiar with this section before attempting to use it.

4.1 Operational Adjustments

4.1.1 Adjusting Twine Tension

- When installed, twine must be held in tension so that it properly engages the twine pulley, does not detach from the guide rollers, and is cut consistently when it is finished wrapping a bale. At the same time, if the tension is very tight, it may be too tight for the bale to pull and feed twine through the system.
- Twine tension should be adjusted during each use so that it is not too tight and not too loose.
- There are two tensioners – one at the right side of the baler where the twine exits the chamber (Figure 20, A) and one at the top of the twine arm (Figure 21, A).

4.1.2 Adjusting Pickup Height

- For optimal operation, the tines of the pickup should be about one (1) inch from the ground in normal conditions. In bumpy or rocky fields, a clearance of up to two (2) inches or more may be suitable to prevent damage to pickup components. For baling light hay cuttings or straw, the pickup may need to be lowered.
- Adjust the pickup height by lifting it with the lift lever (Figure 22, A) and using the lower limit chain (B) to keep it in place.
- The pickup may be lifted and locked in the transport position by means of the lift lever and transport lock (Figure 22, A).
4.1.3 Adjusting Number of Wraps per Bale

- The twine pulley (Figure 23, A), which controls the number of windings of twine on each bale, is behind the cover on the right side of the machine.
- There are two twine installation positions on the pulley. Using the larger diameter slot will result in the twine winding around the bale approximately 11 times, while the smaller diameter will result in approximately eight (8) wraps.
- Use the larger diameter slot (more wraps) when bales will need to be handled more, or when the baled product is short and/or very dry. Use the smaller wheel for longer hay and to conserve twine.

4.1.4 Adjusting Bale Density

- The baler can be set to produce bales at four (4) different densities. Adjusting the bale density is done by moving the position of the door latch connecting rod (Figure 24, A) to a different hole in the chamber full indicator lever (B).
- For higher density bales, move the rod to a lower hole. For lower density bales, move the rod upward.
- In general, dryer hay and straw will require a higher density setting for best performance, while hay with higher moisture, and especially green hay, should be set at a lower density.
- When increasing density, always move one hole at a time until you reach the desired bale density.
- If a shear bolt is broken when the chamber is full, but the bale has not yet started the wrapping process, replace the shear bolt and reduce bale density.

4.1.5 Adjusting Tailgate Closing Speed

- The opening and closing action of the tailgate can be slowed down or sped up to suit your preference by adjusting the position of the flow control valve (Figure 25, A).
- Hydraulic flow can be stopped for maintenance or other purposes by turning the stop valve (B) upward so that it is perpendicular to the cylinder.
4.1.6 Resetting the Twine Arm

- The twine arm must be fully reset for the automatic wrapping mechanism to function properly.
- The reset procedure, as discussed below, should be performed each time you begin baling and if the automatic wrapping mechanism fails to perform as expected.
  1. There is a release lever (Figure 26, A) on the outside of the arm pivot box (B). Press the lever outward, toward the outside of the baler, to release the twine arm.
  2. If the twine arm was previously reset, it will quickly drop. If it was not reset, pulling on the release lever will not cause any change. In either case, turn the pulley (Figure 27) in the clockwise direction until the arm begins to rise.
3. Grasp the twine arm and pull up and toward the outside of the baler until the arm is as far to the right side (pulley side) as it will go. Push the arm back toward the center of the baler until the arm is in the position shown in Figure 28. You should feel the arm “snap” into place. Pull the hanging twine until it is taut. Cut off any excess twine hanging from the end of the arm beyond 12 inches.

4.2 Operation Procedure

4.2.1 Initial Setup

1. Attach the baler to the tractor as discussed in Section 3.
2. Unlatch the pickup lever lock and lower the pickup. Adjust the height of the pickup with the chain so that the tines are approximately one (1) inch from the ground at their lowest point. For very long grass, the height may be raised some to help avoid dirt mounds. For very short grass and cut straw, the pickup may need to be lowered some for good results. Avoid continual contact with the ground, as this will result in dirty hay and will reduce the life of the pickup tines.
3. Make sure the twine is fed properly over the rollers and around the twine pulley (see Figure 29 - Figure 31).
4. Attach the tailgate pull rope to the tractor’s roll bar so that it can be easily grasped but is not tight.
5. Reset the twine arm as discussed in Section 4.1.6.
4.2.2 Baling

1. Line up to straddle the first windrow. At idle engine speed, engage the tractor’s power take-off (PTO) and then gradually bring the engine RPM up to achieve 540 RPM PTO speed. The PTO should remain engaged during all baling activity.

2. Drive slowly over the windrow and begin picking up the hay or straw. Optimal baling speed will be 2-3 miles per hour, or about a slow walk. The best speed will depend on field conditions and windrow size.

3. Keep an eye on the pickup to make sure the hay is being pulled in by the baler and is not collecting in front of the baler. If material accumulates in front of the baler, stop or slow down until the baler can catch up, and then proceed.

4. The bale chamber indicator provides a visual cue of how full the chamber is. The indicator will not begin to move upward until the bale chamber is about ¾ full.

5. Continue forward until the horn sounds. When you hear the horn, stop forward motion immediately. You will then see the twine arm come up out of the twine arm cavity, go past vertical, and then start to move back across the bale. The twine will then be cut and the bale will be ready to eject.

6. Pull on the rope to raise the baler’s tailgate. Hold the rope until the bale rolls out, clear of the tailgate, then release the rope. The door will close on its own.
4.2.3 Finishing Work

The following steps should be taken at the end of each day of work. Additional steps are needed if the machine is being stored away for the off-season. See Section 5.4.

1. Shut the implement down by gradually lowering the throttle on the tractor to idle speed before turning off the PTO. Come to a complete stop.
2. Position the implement in its storage location, on level ground.
3. Place the transmission in Park or Neutral, set the parking break, and turn the engine off.
4. If the baler is lifted off the ground, lower the tractor’s lift arms until the baler’s tires contact the ground. Raise or lower the three-point hitch slightly until pressure is off the top link pin, then remove the top link from the baler.
5. Lower the parking stand on the baler and secure it in place with the locking pin. Raise the lift arms if necessary to provide room for the parking stand to go all the way down.
6. Chock the baler’s wheels, disconnect the machine from the tractor’s lower lift arms, disengage the PTO shaft from the tractor, turn the tractor back on, and drive forward and away from the implement.
7. Perform daily maintenance. See the Maintenance Schedule in Section 5.2.

4.3 Recommendations for Good Results

a. In general, traveling at a lower speed while baling will result in a higher density bale.
b. The optimal windrow will have a width of 28-32 inches and a height of 12-16 inches. The more uniform the windrows, the smoother the operation will be and the more consistent the bale weights will be.
c. Many problems can be traced to very short material and/or material that is too dry. Hay is best baled when it is 1-3 feet tall, with approximately 15% moisture content. Very dry hay will result in lightweight and inconsistent bales and may often cause twine not to wrap easily. If the twine arm does not come up after the horn sounds, drive forward a few feet, adding more hay into the chamber. Using a higher density setting may also be required when baling very dry material.
d. To avoid misshapen bales, crop should be evenly distributed across the full width of the baler pickup. For very small windrows, it may be necessary to weave to the left and right while bailing to make sure edges of bales are fully formed.
5 Maintenance

5.1 Maintenance Safety

- Never attempt to lubricate, adjust, or remove material from the baler while it is in motion or while tractor engine is running.
- Wear protective gear such as goggles and gloves if using high pressure air or water to clean the baler.
- Always perform maintenance with the machine positioned on a level surface.

5.2 Maintenance Schedule

<table>
<thead>
<tr>
<th>Action</th>
<th>As Needed</th>
<th>Each Day of Use</th>
<th>100 Hrs. or Each Season</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gearbox – change oil</td>
<td></td>
<td></td>
<td>X</td>
<td>Gear oil: SAE 90, GL-5</td>
</tr>
<tr>
<td>Twine arm gearbox –</td>
<td></td>
<td></td>
<td>X</td>
<td>Gear oil: SAE 90, GL-5</td>
</tr>
<tr>
<td>Hydraulic pump – change oil</td>
<td></td>
<td></td>
<td>X</td>
<td>15W40, 1.8 qt.</td>
</tr>
<tr>
<td>Latch rod pivot bearing – grease zerk</td>
<td>X</td>
<td>X</td>
<td></td>
<td>NLGI No. 2 Grease</td>
</tr>
<tr>
<td>Drive shaft – grease zerk</td>
<td>X</td>
<td>X</td>
<td></td>
<td>NLGI No. 2 Grease</td>
</tr>
<tr>
<td>Twine arm base pivot point – grease zerk</td>
<td>X</td>
<td>X</td>
<td></td>
<td>NLGI No. 2 Grease</td>
</tr>
<tr>
<td>Twine arm crank bar pivot points – grease zerk</td>
<td>X</td>
<td>X</td>
<td></td>
<td>NLGI No. 2 Grease</td>
</tr>
<tr>
<td>PTO shaft – lubricate</td>
<td>X</td>
<td>X</td>
<td></td>
<td>Lubricate according to PTO shaft manual</td>
</tr>
<tr>
<td>Chain tension arm pivot points – lubricate</td>
<td>X</td>
<td>X</td>
<td></td>
<td>Spray a penetrating chain/cable lubricant</td>
</tr>
<tr>
<td>Linkage pivot points – lubricate</td>
<td>X</td>
<td>X</td>
<td></td>
<td>Spray a penetrating chain/cable lubricant</td>
</tr>
<tr>
<td>Tailgate pivot hinge – lubricate</td>
<td>X</td>
<td>X</td>
<td></td>
<td>Spray a penetrating chain/cable lubricant</td>
</tr>
<tr>
<td>Roller chains – lubricate</td>
<td>X</td>
<td>X</td>
<td></td>
<td>Spray a penetrating chain/cable lubricant</td>
</tr>
<tr>
<td>Check nut/bolts – tighten any that are loose</td>
<td>X</td>
<td>X</td>
<td></td>
<td>See Section 5.3.1</td>
</tr>
<tr>
<td>Roller chains – tighten any that are loose</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance Item</td>
<td>X</td>
<td>X</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>------------------------------------------------------</td>
<td>---</td>
<td>---</td>
<td>--------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Tire air pressure – check and inflate</td>
<td></td>
<td></td>
<td>Maximum pressure: 28 psi</td>
<td></td>
</tr>
<tr>
<td>Operational adjustments</td>
<td></td>
<td></td>
<td>Carry out as specified in Section 4.1</td>
<td></td>
</tr>
<tr>
<td>General machine cleaning</td>
<td></td>
<td></td>
<td>Remove visible dirt/debris from inside and outside of machine</td>
<td></td>
</tr>
<tr>
<td>Full bale chamber alarm horn battery – replace</td>
<td></td>
<td></td>
<td>9V battery</td>
<td></td>
</tr>
<tr>
<td>Electrical wires for horn – inspect for wear and replace</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thorough machine cleaning</td>
<td></td>
<td></td>
<td>Clean as discussed in Section 5.4</td>
<td></td>
</tr>
<tr>
<td>Components with bare metal – apply paint or grease to prevent rust</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 5.3 Routine Maintenance

#### 5.3.1 Roller Chain Tension

Roller chains stretch slightly over time with normal use. Significant stretching takes place during initial use on a new machine. A loose chain will cause sprockets to wear prematurely and result in sub-optimal function of the roller system. Check chain tension by depressing a longer length of chain to observe the degree of flexion.

Adjust main drive chain tension by shortening or lengthening tensioner springs (Figure 33, A,B) and by changing position of tension plate (C). Optimal spring length specifications are **1 7/16 inches (36mm)** for **spring A** and **1 1/2 inches (38mm)** for **spring B**. If the tension plate (C) is at the proper setting, the joint chain (D) should deflect **approximately 1/8 inch (3mm)** when pressed upward from below.

Tension of the hydraulic power pack drive chain (Figure 34, A) is adjusted by moving the position of the power pack with respect to the drive sprocket (B). Optimal tension will result in **approximately 3/16 of an inch (5mm) of deflection**.

Pickup drive chain tension (Figure 35, center) is adjusted by changing the position of the tension pulley. Optimal tension will result in **approximately 0.12 inches (3mm) of deflection**.

#### 5.3.2 Pickup Slip Clutch Tension

The baler's pickup comes equipped with a slip clutch protection mechanism. When pickup components experience excessive resistance, the clutch will slip to prevent damage. The clutch's tension springs (**Error! Reference source not found.** A) apply pressure to resist slipping and must be tensioned properly. They are normally set at the correct tension at the factory, with spring length at approximately **one (1) inch (27mm)**. They should be adjusted to this length if the clutch begins to slip during normal use. However, each time the clutch slips, the friction discs inside the clutch experience wear. The discs should be replaced if worn.
5.3.3 Pickup Suspension

The pickup is suspended with two (2) springs (Figure 37, A), one on each side. The length of the spring should be approximately **1 7/8 inches (48mm)** when the pickup is released into working position. Tension can be adjusted if necessary by adjusting the position of the nuts (B).

5.3.4 Twine Tension

Twine tensioners keep the twine in place and prevent problems with the operation of the automatic bale wrapping mechanism. The tension springs should provide enough pressure to perform this purpose without inhibiting twine release. Check that the springs are in place and are not damaged. Test the system by pulling quickly and steadily on the end of the twine and then stopping abruptly. It should not be excessively difficult to pull twine and twine should remain in place along the threading path. Adjust spring tension as needed by turning the nuts at the end of the threaded screws (Figure 38 & Figure 39).
5.3.5 Twine Cutting Blade

The twine cutting blade (Figure 40, A) will be subject to gradual wear during normal use. Replace as necessary. The blade can be replaced with a standard utility knife type blade. Loosen screws and pull blade to release and use reverse steps to install new blade. Use caution when replacing the blade to prevent injury.
5.4 End of Season Storage

After using the machine for the last time of the season, perform the following actions to prepare the machine for storage after completion of daily maintenance procedures.

- Remove all covers and clean all parts of the machine of dirt and debris. Thoroughly clean the inside of the pickup, the bale chamber, and other hard to reach areas where debris tends to accumulate. Compressed air is recommended for hard-to-reach areas. Do not use compressed water near bearings or grease fittings.
- Perform a full inspection of the machine to check for any damaged components. Replace as needed.
- Check tire pressure and inflate as needed. Check tires for signs of wear.
- Lubricate the machine according to the Maintenance Schedule in Section 5.2.
- Apply paint or grease to any bare metal surfaces to prevent rust.
- Remove the 9V battery that powers the bale chamber full alarm horn.
- Store the machine in a well ventilated indoor space. If no indoor space is available, cover the machine with a plastic tarp, removing it occasionally to allow accumulated moisture to dissipate.
- Inspect the machine occasionally for any accumulation of moisture, rust, or other problems and address accordingly.

5.5 Beginning of Season

Before the first use of the season on a used machine, perform the following actions to ensure trouble-free operation.

- Inspect the machine for any rust, animal nests, or other problems.
- Clean the machine thoroughly of any dirt or debris that has accumulated in the off-season.
- Check tire pressure and inflate as needed. Check tires for signs of wear.
- Lubricate the machine according to the Maintenance Schedule in Section 5.2.
- Apply paint or grease to any bare metal surfaces to prevent rust.
- Install the 9V battery that powers the bale chamber full alarm horn. Check electrical wires for any signs of wear. Replace as needed. Test horn function using the switch and replace battery as necessary.
- Connect the machine to the tractor as discussed in Section 3. Start the machine with the tractor at idle engine speed. Check for any operating problems. Test tailgate cylinder function.
- Before attempting to bale for the first time, create a windrow of hay or straw from a small area of field/stand and attempt to bale it. Address any and all problems before attempting to begin work.